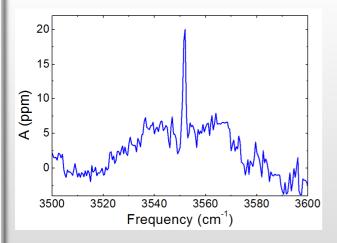


Does the Reaction of HO₂ with NO Produce HONO₂ and HOONO?


by

Laura Mertens

PhD student, California Institute of Technology

Tuesday March 15, 2016 at 14h00 Salle de conférences, ICARE

 $HO_x(HO_2 \text{ and OH})$ and $NO_x(NO_2 \text{ and NO})$ radicals are key intermediates in chemistry throughout the atmosphere; the HO_x and NO_x cycles catalyze ozone depletion in the stratosphere and ozone and photochemical smog production in the troposphere. Interconversion within the HO_x family and within the NO_x family happens continuously, partially through the reaction of HO_2 and NO to form OH and NO_2 . Since these radicals are continually recycled, even a small branching yield of nitric acid ($HONO_2$) from the reaction of HO_2 with NO would impact radical concentrations predicted in the troposphere and stratosphere, by cumulatively sequestering radicals in a stable reservoir species.

Fig. 1: Spectrum of pure HONO₂ (4.0×10^{12} cm⁻³) at room temperature. HONO₂ was purified by vacuum distilling a mixture of HONO₂ (70% in water) and concentrated H₂SO₄ and added to the cell with (87 ± 2) torr of N₂.

Butkovskaya et al. observed a small yield of HONO₂ from the reaction of HO_2 with NO (0.5% at 1 atm and 298K) in a turbulent flow reactor using Chemical-Ionization Mass Spectrometry. We investigated this reaction by an alternative method: directly detecting the HONO₂ – as well as its weakly bound isomer HOONO – with Pulsed-Cavity Ringdown spectroscopy. HO₂ radicals were produced by Pulsed Laser Photolysis of Cl₂ in a slow flow cell, in the presence of methanol. Addition of 700 Torr of CO prevented unwanted HONO₂ formation from the reaction of OH and NO₂and HO₂. Our experiments provide a recycled complementary approach, allowing detection of products spectroscopically on short time-scales (2.5 ms) in the absence of any wall reactions.

Pour tout renseignement complémentaire, ou proposition de séminaire par un thésard ou un chercheur invité, contacter Sedina Tsikata (sedina.tsikata@cnrs-orleans.fr)