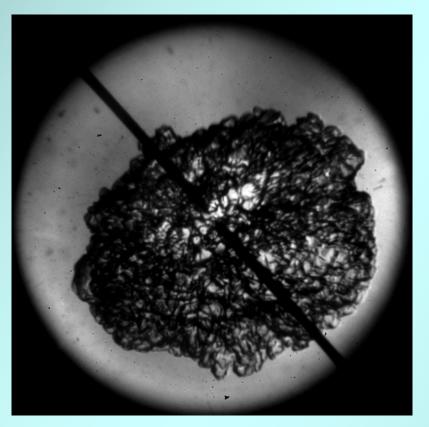


all programme des séminaires ICARE...


Correlations of High-Pressure Lean Methane and Syngas Turbulent Burning Velocities: Effects of Turbulent Reynolds, Damköhler, and Karlovitz Numbers

par

Pr Shenqyang SHY

Department of Mechanical Engineering, National Central University, Jhong-li, Taiwan

<u>le jeudi 26 juin 2014 à 11h</u> salle de réunion ICARE

This seminar talks correlations of high-pressure turbulent burning velocities (S_T) using our recent S_T measurements of lean methane and syngas spherical flames at constant elevated pressures (p) and constant turbulent Reynolds numbers $(Re_T \equiv u'L_I/\nu)$, where u', L_I , and n are the r.m.s. turbulent fluctuation velocity, the integral length scale of turbulence, and the kinematic viscosity of reactants, respectively. Such constant constraints are achieved by applying a very large high-pressure, dualchamber explosion facility that is capable of controlling the product of $u'L_{I}$ in proportion to the decreasing *n* due to the increase of p. We found that, contrary to popular scenario for $S_{\rm T}$ enhancement with increasing p at any fixed u', $S_{\rm T}$ actually decreases similarly as laminar burning velocities (S_L) with increasing p in minus exponential manners when values of Re_{T} are kept constant.

Moreover, $S_{\rm T}$ increases noticeably with increasing $Re_{\rm T}$ varying from 6,700 to 14,200 at any constant p ranging from 0.1 MPa to 1.0 MPa. It is found that a better general correlation for the normalization of $S_{\rm T}$ is a power-law relation of $S_T/u' = aDa^b$, where $Da = (L_I/u')(S_I/\delta_F)$ is the turbulent Damköhler number, $\delta_F \approx \alpha/S_I$ is the laminar flame thickness, and α is the thermal diffusivity of unburned mixture. Thus, the very scattering S_T data for each of lean methane and syngas mixtures can be merged on their S_T/u' vs. Da curves with very small data fluctuations. For lean methane flames with the Lewis number $(Le) \approx 1$, $S_T/u' \approx 0.12 Da^{0.5}$ supporting a distributed reacton zone model anticipated by Ronney (1995), while for lean syngas flames with $Le \approx 0.76 \ll 1$, $S_{\rm T}/u' \approx 0.52 Da^{0.25}$ supporting a theory predicted by Zimont (1979). A simple physical mechanism is proposed to explain what causes the aforesaid discrepancy on the power-law constants.

Prochain séminaire prévu 17/07/2014, 11h : Experimental and kinetic modelling of trans-2-butene oxidation in jet-stirred reactor and combustion bomb, par Yann FENARD, doctorant à ICARE

Pour tout renseignement complémentaire, ou proposition de séminaire par un thésard ou un chercheur invité, contacter Ivan Fedioun, fedioun@cnrs-orleans.fr, poste 5520, 06.62.81.23.08