
Ozone: Promising Combustion Promoter [2] 
 

• Ozone Decomposition 
 
 

• Neat Fuel Oxidation 
 
 
 
 
 
 

• Ozone-seeded Fuel Oxidation [4]  
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LTC Engine with current and future constraints: 
• Fuels: Standard Gasoline grade fuel / gaseous fuels (natural gas, 

hydrogen), biofuels- gasoline blends 
 
 

       ≠ 
 
 
 
 

Advantage : 
• High Efficiency due to elevated compression ratios 
• Low emissions (NOx and Soot) 

 
Drawbacks: 
• Poor low load stability 
• Challenging cold start, warm-up… 

 
Solutions: 
• Igniter, Octane on the demand, Reactivity of the air on the 

demand → Ozone – Air – Fuel reaction 

(1) Ozone improves  the reactivity of many fuels [5-9] (3) The fuel injection strategy can lead to NO generation, which 
decreases the impact of ozone Addition [11, 12] 

(2) Ozone interactions with residual species during the 
compression stroke need to be accounted for [10] 
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 Use single-cylinder research engines to improve the understanding of different concepts 
 Apply non-intrusive optical diagnostics to better understanding the physical and chemical 

mechanisms 
 Measure ozone destruction during the compression stroke 
 Improve the understanding of the local ignition 
 Characterize the discharge and the production of the key species 

 Improve current ozone kinetics mechanisms 
 Benchmark the prediction of O3 decomposition and O formation during the compression stroke 
 Include minor species concentration effects  (O3, O, NO, NO2…) into skeletal CFD O3 kinetics 

mechanisms  
 
   

Ozone assisted LTC combustion enables tailored heat 
release rates for each cycle [3, 4]  

O2 + O* O3 
 

Suitable LTC concepts aim to simultaneously increase internal combustion engine efficiency and drastically decrease pollutant  emissions without costly hardware additions 
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1st Early Injection 
Catch O3 effect 

2nd  Injection 
Control CA50 –Noise -

Emissions 

 Background 

 Main Results 

Perspectives and Future Work 

Dedicated intake port ozonator: 
(like SkyActiv-X Mazda engine !?) 
 
DBD Discharge  
sinusoid or nanosecond High Voltage   
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O3  O2 + O 

O + O  O2 

 Senkin simulations for motored conditions 
O availability varies during compression stroke 
O recombines to O2  if the fuel is injected too late  

𝑵𝑵 + 𝑶𝟑  →  𝑵𝑵𝟐 +  𝑶𝟐 reaction between both oxidizing species  

Injection Strategies 
NO emissions and residual NO 

Piston Bowl 

Ozone and NO have a strong chemical Affinity  
 NOtrapped   reacts with ozone in GCI 

operation  
 NOtrapped is transformed in NO2 

 

NO + O3  NO2 + O2 

(4) Ozone Assisted LTC: Injection strategy and 
combustion control at low-loads [12] 

(6) CFD Simulation of an HCCI engine (Openfoam) [14] 
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Advanced plasma igniters that generate early-cycle, in-
cylinder ozone: 
 
 Corona, nanopulse Discharge … 

Ono & Oda, J. Phys. D: Appl. Phys., 2007 

Prototype DBD ozone generator,  ANR CICCO, France  

(5) Ozone kinetic mechanisms, and the associated fuel and EGR 
interactions [13 ] 

U. Orléans Optical 
Rapid Compression Machine (RCM) 

Sandia Optical Engine 

 Optimize O3 production from plasma discharges:  
 Energy balance as function of ozone production 
 Evaluate impact of ozone production on dominant in-cylinder gas constituents (Air, H2O, CO2, N2…) 
 Characterize the impact of minor species produced by the plasma discharge  
 Evaluate the ability of ozone control during engine transients 

 Measure auto-ignition delays of air-diluent-fuel-ozone mixture s in a RCM 
 Perform simultaneous measurements of ozone decomposition 
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 Impact of ozone addition evaluated as function of fuel-type for HCCI 
combustion 

 Ozone and NOx (from residual or recirculated gas) can interact and 
decrease the oxidation potential of ozone 

 NO and NO2 likewise influece fuel reactivity, but to a lesser extent. 

With late-cycle direct injection, NOx emission is linked to the spray bowl interaction. 

 Ozone does not have a monotonic influence on the ignition delay 

 Ozone rapidly decomposes into O+O2 during the compression stroke 

 Late-cycle SOI needs to appropriately timed to take advantage of ozone 
decomposition to maximize the ozone-fuel interactions 

 O3 kinetics are not well known at high pressure/temperature conditions 

 Current O3 mechanisms lack accurate fuel/EGR interactions 

 Minor species (O3, NO, NO2…)  need to be taken into account 

 Tabulation of many species or large mechanism with dynamic chemical 
mechanism reduction is under consideration 
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