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We report an experimental investigation of the wake of free falling super-hydrophobic
spheres. The mutual interaction between the air layer (plastron) encapsulating the
super-hydrophobic spheres and the flow is emphasised by studying the hydrodynamic
performances. It is found that the air plastron adapts its shape to the flow-induced
stresses which compete with the surface tension. This competition is characterised by
introducing the Weber number We, whilst the plastron deformation is estimated via the
aspect ratio χ. While noticeable distortions are locally observed, the plastron becomes
more and more spherical in average (i.e. χ → 1) as far as We increases. The study
of the falling motion reveals that the plastron compliance has a sizeable influence on
the wake development. Investigating the lift force experienced by the super-hydrophobic
spheres, the onset of wake instabilities is found to be triggered earlier than for smooth
spheres used as reference. Surprisingly, it is also observed that the early promotion of
the wake instabilities is even more pronounced beyond a critical Weber number, Wec,
which corresponds to a critical aspect ratio χc. Furthermore, the magnitude of the hy-
drodynamic loads is found to be dependent on the average deformation of the gas/liquid
interface. Indeed, in comparison to the reference spheres, high deformation achieved for
χ > χc (oblate shape) leads to lift and drag increase, whereas low deformation obtained
for χ < χc (spherical shape) yields lift and drag mitigation. Accordingly, taking into
account the plastron deformation provides an attractive way to explain the somehow
discordant results reported in other studies at comparable Reynolds numbers. These
results suggest that the amount of vorticity produced at the body surface and then
released in the wake is strongly impacted by the plastron compliance. If confirmed by
additional studies and extrapolated to other flow configurations, our findings would imply
that plastron compliance and its feedback on the flow, which are currently neglected in
most theoretical works and numerical simulations, must be accounted for to design super-
hydrophobic surfaces and/or predict their performances.

1. Introduction

Among the large variety of materials fashioned for industrial needs, super-hydrophobic
(SH) surfaces have attracted an increasing attention since the 90′s (Quéré 2008). Re-
sulting from the combination of surface texturing and chemical repellency (Shirtcliffe
et al. 2010), SH surfaces in the so-called Cassie-Baxter state (Cassie & Baxter 1944)
can entrap a gas layer, referred to as plastron, in their roughness restricting thereby the
solid/liquid contact area. This feature yields slippage, which may have a strong impact
in a wide range of engineering applications where wettability control is essential (Zhang
et al. 2012). In the framework of drag control, a number of studies have evidenced the
beneficial effects of SH surfaces in reducing skin friction at laboratory scale (Rothstein
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2010). However, the extrapolation of these results under broader operating conditions
is still to be demonstrated (Samaha et al. 2012). One of the main arising issues is the
stability of the gas/liquid interface leading eventually to plastron failure (the so-called
transition from the Cassie-Baxter state to the Wenzel state), which is a cornerstone to
warrant the effectiveness and the sustainability of SH surfaces (Piao & Park 2015). In
particular, the effects of flow-induced perturbations on the interface stability and the
possible feedback of plastron compliance on the flow still represent a tough challenge for
current theoretical studies and numerical simulations.

The range of scales featuring the problem is so huge that a full resolution is unrealistic.
Furthermore, solving a two-phase flow involving stiff jumps of density at the gas/liquid
interface is a challenging issue. To bypass these constraints, the interface between the gas
and the liquid can be modelled by a non-deformable surface neglecting thereby the effect
of surface tension. For instance, the slip length model is a popular boundary condition
used in a large number of numerical simulations or theoretical studies to mimic SH
surfaces from partial slip (see e.g. Min & Kim 2004; Ybert et al. 2007) to perfect slip (see
e.g. Lauga & Stone 2003; Martell et al. 2009). In this approach, the liquid phase flows
over patches of slip/no-slip areas arranged either regularly or randomly. Recently, more
realistic approaches have been deployed by simulating the flows within the two phases
(Gruncell et al. 2013; Jung et al. 2016) but still avoiding any deformation of the gas/liquid
interface. Neglecting the plastron compliance relates to two major assumptions: i. there is
no possible feedback on the flow due to the shape modification of the boundary condition
and ii. the plastron is presumed resilient even at high speed flows. The relevance of these
assumptions is disputed by experimental observations at both low and high Reynolds
numbers. Byun et al. (2008) investigated the flow within microchannels with transverse
grooves. They observed curved gas/liquid interface, which induced wavy flow on the
grooves for large pitch-to-width ratio. In some cases, plastron depletion was reported.
Kim & Rothstein (2017) studied the influence of the gas/liquid interface on the laminar
flow over an array of SH pillars spanning the entire height of a microchannel. Both
pressure and viscous drag were found to be sensitive to the curvature of the air bubbles
entrapped within the pillar cavity. Studying respectively turbulent flows over a flat plate
and circular cylinders treated with SH coatings, Aljallis et al. (2013) and Kim et al.
(2015) reported performance losses once the air plastron was washed out. This issue has
been addressed recently in studies aiming at identifying the limits at which plastron
failure is likely to occur. Piao & Park (2015) investigated theoretically the longevity
of the plastron in a single 2D groove subjected to harmonic pressure fluctuations and
gas diffusivity. They found that for underwater applications where immersion depth is
typically O(m), pressure-induced perturbation is the leading order effect. Their findings
revealed that the interface stays stable only for small enough width of the groove, i.e.
O(µm). Based on the Direct Numerical Simulations (DNS) of a turbulent channel flow,
Seo et al. (2015) investigated the pressure induced by the footprint of the surface texture
modelled as a local shear-free condition. The resulting averaged pressure distribution
was then used to predict the typical interface deformation over a groove. Although their
approach was restricted to an one-way coupling, these authors delineated critical texture
size beyond which plastron failure may occur, which was found to depend on both the
pattern width and the Weber number expressed in wall units.

This has motivated us to investigate the possible interplay between the flow and the
gas/liquid interface, which is at the core of this study. To this end, we designed an
experimental set-up to study the hydrodynamic performances of free falling SH spheres,
which have been chosen as a prototype geometry. A large number of experimental,
numerical and theoretical works have been devoted to the investigation of the wake
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of free falling/rising bluff bodies (see Ern et al. 2012, and references therein). All in
all, these studies emphasised the key role of the vorticity generated at the surface of
the bodies in the development of the wake (see e.g. Leal 1989; Magnaudet & Mougin
2007; Auguste & Magnaudet 2018). Indeed, the amount of vorticity produced within
the boundary layer developing on the surface of the body is at the root of the onset of
wake instabilities and has a direct impact on the hydrodynamic forces (Wu et al. 2007).
In addition to parameters such as Reynolds number or buoyancy effect, several works
pointed out the sizeable influence of both body shape and slip condition at the body
surface on the production of vorticity. For freely rising elongated bodies, Fernandes et al.
(2007) investigated the critical Reynolds number at which the onset of wake instabilities
appears, with respect to the aspect ratio. They reported lower critical Reynolds numbers
than those of spheres. Earlier transition was also observed by Jenny et al. (2004) for
imperfect spheres produced either by damaging the surface or by displacing the center
of gravity. Using 2D DNS at low Reynolds number, Legendre et al. (2009) investigated
the effect of slip boundary condition on the production of vorticity at the surface of
a circular cylinder. They showed that the slip condition delays the appearance of wake
instabilities and yields drag and lift mitigation. Based on a two-phase approach, Gruncell
et al. (2013) simulated the steady laminar flow around a sphere encapsulated within an
air layer. A significant drag reduction was obtained with respect to the dimensionless
plastron thickness. The influence of the shape of bodies with perfect slip was studied
by Mougin & Magnaudet (2002a) and Magnaudet & Mougin (2007) who carried out
DNS of flows around non-deformable oblate spheroidal bubbles. They evidenced that the
maximum surface vorticity increases with the aspect ratio of the bubble. Exploring a
wide range of control parameters, they observed that wake instabilities appear for high
enough aspect ratio and coincide with the increase of flow-induced loads.

Very few experimental works have been dedicated to the study of the drag of spheres
covered by a SH coating. McHale et al. (2009) performed falling experiments of SH acrylic
spheres over a wide range of terminal Reynolds number Re∞ (based on the diameter of the
sphere and its falling terminal velocity) using several surface treatments. An intermediate
sand layer was deposited to vary the surface roughness. The authors investigated the
change in terminal velocity and accordingly in drag with and without the presence of
the air plastron. More recently, another falling sphere experiment was carried out by
Ahmmed et al. (2016) using laser-textured PTFE spheres at both low and high Re∞
using glycerine/water mixtures. Although the ranges of Re∞ investigated by McHale
et al. (2009) and Ahmmed et al. (2016) do not overlap, some data were collected at
comparable Re∞. Within the Cassie-Baxter state, significant drag reduction (≈ 10%)
was achieved by McHale et al. (2009) for Re∞ ≈ 104. On the contrary, at Re∞ ≈ 5×103,
Ahmmed et al. (2016) evidenced a decrease of the terminal velocity by up to 10% yielding
an increase by 20% of the drag in comparison to standard spheres. These somehow
discordant results illustrate that a comprehensive understanding of the flows over SH
bluff bodies is still missing.

This study aims at providing new insights about the physical mechanisms governing the
development of the wake of SH spheres. To the best of our knowledge, no attempt has yet
been undertaken to study the influence of the plastron compliance. This is the main goal
of this work. The motivation of this study is twofold: i. evidencing and characterising
the interface distortion and ii. investigating the feedback of the plastron deformation
onto the wake of the sphere. To this end, particular attention is given to the onset of the
wake instabilities and the hydrodynamic loads experienced by the SH spheres. In order
to highlight the role of the plastron deformation, the dependency of the flow on other
parameters must be as small as possible. In particular, the flow regime must be chosen to
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Figure 1. Drag coefficient as a function of the Reynolds number for smooth spheres. ◦:
experimental data (Lapple & Sheperd 1940). Solid line: semi-empirical law (Cheng 2009) valid
up to Re∞ = 2×105. The present study focuses on the sub-critical regime, before the appearance
of the drag crisis phenomenon.

be Reynolds independent. The well known evolution of the terminal drag coefficient CD∞
of a sphere is plotted in figure 1 with respect to Re∞ (Lapple & Sheperd 1940). Large
variations of Reynolds number imply a modification of the involved phenomena and of
the flow-induced stresses on the plastron. The low Re∞ region was partially investigated
(Re∞ = 2 × 10−1 and Re∞ = 2 × 103) by Ahmmed et al. (2016), which found out
no drag reduction with respect to standard spheres in agreement with their results at
Re∞ ≈ 5 × 103. In the larger Re∞ region dominated by the drag crisis phenomenon
falling spheres experiments were also performed by considering an air plastron sustained
by the Leidenfrost effect (Vakarelski et al. 2011), a super-hydrophobic coating (Jetly et al.
2017), or a combination of both (Vakarelski et al. 2012, 2014). These studies evidenced
drag reduction up to approximately 80% due to an early drag crisis transition with
respect to reference spheres. The air layer appeared to be able to promote the movement
of the separation point of the turbulent boundary layer towards the rear side of the
falling sphere, causing a narrowing of the wake. Within this study, the focus is put
on the so-called sub-critical regime, which is featured by the massive separation of the
laminar boundary layer (Achenbach 1972). As illustrated in figure 1, the drag coefficient
characterising this regime is approximately constant, which means that the flow is weakly
dependent on Reynolds number.

The paper is organized as follows: the experimental set-up and the manufacturing
procedure of the SH coatings are described in §2. The deformation of the plastron is
investigated in §3, while its influence on the hydrodynamic performances of the falling
spheres is discussed in §4.

2. Experimental set-up and manufacturing procedure

2.1. The falling sphere experiment

The experiments were performed in a transparent tank (100× 100 mm2 cross-section
and 650 mm height) filled with double-distilled water (see figures 2(a) and 2(b)). In this
study, stainless steel bearing spheres with nominal diameter d ranging from 5 mm to
25 mm were used as reference. Before each try, the spheres were gently dipped beneath
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Figure 2. The falling sphere experimental set-up: (a) side view and (b) top view. (c) Typical
example of a 3D trajectory of a free falling sphere. The color scale indicates the sphere velocity
in ms−1. The black curves represent the projections of the trajectory on the three planes.

the water surface by means of an electromagnetic holder, which was used to accurately
control their release. Blank tests were performed in order to exclude significant effects of
the electromagnetic field on the sphere drops. During the tests the temperature of the
water was monitored by a thermocouple and was kept around 19 ◦C.

Once released, the sphere motion was recorded by a Phantom V341 high-speed camera
(Zeiss Makro-Planar T* 2/50 mm ZF lens), at a 2560×1100 px2 resolution with a frame
rate of 1000 fps. A mirror placed at 45◦ with respect to the tank enabled the simultaneous
recording of front and side views with a single camera. The selected recording window
resulted into a conversion factor of 0.3 mm/px. The results reported in this paper are
obtained by averaging ten independent trials. A 15 minutes settling time was imposed
between each test to ensure the water to be completely at rest before the sphere release.
This value was chosen as a compromise between the large number of executed tests and
the fluid quiescence necessity. Horowitz & Williamson (2010a) imposed a 2 hours settling
time, showing how disturbances in the fluid may lead to large random transverse motion.
No justification for such large time was given. Conversely, Truscott et al. (2016) justified
their 30 minutes settling time performing Particle Image Velocimetry measurements of
the flow field following an experimental run. However, buoyant spheres (Horowitz &
Williamson 2010a; Truscott et al. 2016) may be more impacted by residual disturbances
rather than the large density stainless steel spheres used in this work. Moreover, blank
tests were executed varying the imposed settling time, showing no appreciable differences.
A post-processing analysis of the recorded videos, carried out with the commercial
software MATLAB R©, allowed the reconstruction of the time-resolved 3D trajectory of
the falling spheres, with the z-axis aligned with the gravity g and the x and y coordinates
referring to the horizontal plane. The evolution of the sphere velocity was deduced from
the time derivative of these trajectories (see figure 2(c)). Details of the used algorithm and
measurements uncertainties are presented in Appendix A. Velocity uncertainties (95%
confidence level) lower than 5% of the corresponding terminal velocity were evaluated
for all the analysed spheres. Notice that the exploited tank was not tall enough to get
the large diameter spheres reach their terminal velocity. Measurements presented in §4
should therefore be regarded as qualitative results for Re∞ > 2×104. A new experimental
set-up is currently under construction to overcome this issue.

In addition to the sphere motion measurement, high magnification videos were per-
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formed to investigate the behaviour of the air plastron during the fall. In that case, a
2048 × 1152 px2 recording window (Sigma 180 mm F2.8 APO Macro EX DG OS lens)
and a 1300 fps recording speed were used. Only the front plane was recorded, and the
corresponding spatial resolution was 0.06 mm/px.

2.2. The super-hydrophobic coatings

A wide range of manufacturing procedures have been developed to produce SH surfaces
(see e.g. Zhang et al. 2008; Bhushan & Jung 2011, for a review), from chemical vapour
deposition (Lau et al. 2003) to costless mechanical sanding of naturally water-repellent
materials (Nilsson et al. 2010) to cite but a few. Depending on the selected technique,
either regular or random patterns of micron-sized and/or nano-sized structures can be
produced at the surface. In most cases, the samples studied are flat surfaces. However, a
large number of the techniques mentioned above are not suited as far as curved surfaces
are concerned. This is the reason why a spray coating method (McHale et al. 2009; Aljallis
et al. 2013; Kim et al. 2015) was used to produce the SH spheres. The SH properties were
obtained by depositing a commercially available product, Ultra-Ever Dry R© (UltraTech
International 2017). To this end, a specific manufacturing procedure was designed as
follows:

1. the surface of the reference sphere was first cleaned with acetone then rinsed with
double-distilled water and finally dried (see figure 3(a)),

2. an etch primer (Ultra-Ever Dry R© bottom coating) was uniformly sprayed over the
surface,

3. an intermediate layer made of a carbon-based powder was deposited onto the
surface in order to control the surface texture (see figure 3(b)),

4. the etch primer was sprayed again over the intermediate layer and then air dried
for at least 1 hour with a double purpose: firmly stick the powder to the surface and
provide a consistent material for the SH coating to bond,

5. the SH properties were obtained by spraying the Ultra-Ever Dry R© top coating
over the surface and letting it dry for at least 2 hours.

Two different carbon-based powders with grade P220 and P80 were employed as
intermediate layers in this study. The resulting coatings are labelled SH-220 and SH-
80, respectively. In addition, SH spheres without intermediate layer were produced by
skipping steps 3 and 4 of the described procedure. This coating will be referred to as SH-
NAR (No Additional Roughness) in the following. Compared to the smooth spheres, the
deposit of the SH coating increases both mass and diameter, which have been measured
with an accuracy of 0.1 mg and 10 µm, respectively. Accordingly, the resulting density
ratio between sphere and water (ζ = ρs/ρf ), which is one of the main driving parameter
of the falling motion (Ern et al. 2012) lays within [6.2 - 7.8]. The high values of ζ achieved
in this study imply that the sphere motion is predominantly vertical (see figure 6 in Ern
et al. (2012) where this behaviour is referred to as mode A) as illustrated by the scales
of movement in figure 2(c). Note also that the size of the roughness deposited on the
sphere surface is not high enough to promote the laminar-to-turbulent transition of the
boundary layer (Achenbach 1974) which would lead to the so-called drag crisis (see figure
1). Details of the properties of the produced spheres and measurement uncertainties are
provided in Appendix A.

In addition, SH flat plates were produced following the same manufacturing procedure
in order to analyse the properties of the SH coatings. Results obtained from the combina-
tion of confocal microscopy (see figure 4) and contact angle measurements are outlined in
table 1, which emphasises the change in surface roughness λ as a function of the grade of
the intermediate layer. Due to the completely random spatial distribution of the powder
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Figure 3. Images taken during the manufacturing procedure of a d = 10 mm SH sphere
illustrating: (a) reference stainless steel sphere, (b) intermediate layer made of a carbon-based
powder, (c) air plastron around the surface of the SH sphere once immersed in water.

SH-NAR SH-220 SH-80
λ [µm] 25 ± 4 74 ± 12 142 ± 23
θs [◦] 160.7± 2.8 150.1± 3.0 145.7± 2.0
θr [◦] 1.6± 0.2 2.4± 1.0 5.4± 3.2

Table 1. Major properties of the produced SH coatings. λ, root-mean-square surface roughness.
θs, static contact angle. θr, roll-off angle. The reported uncertainties represent the 95%
confidence level.

Figure 4. Confocal microscopy analysis of a portion (1.5× 1.0 mm) of a flat plate covered by
the SH-220 coating. The color scale (blue-to-red) indicates the surface roughness (0 - 170 µm).
Notice the completely random spatial distribution of the powder particles.

particles, λ was chosen as the representative dimension of the roughness elements (see e.g.
Alamé & Mahesh 2018). All produced surfaces are characterised by high static contact
angle θs and low roll-off angle θr (indicative of small contact angle hysteresis), which are
symptomatic of the so-called Cassie-Baxter state. This is well supported by the presence
of the air plastron around SH spheres once immersed in water as demonstrated in figure
3(c).

3. Plastron deformation

For the remainder of the paper, the symbol ? denotes dimensionless variables where
the time t0 =

√
d/ ((ζ − 1) g) and the velocity V0 =

√
(ζ − 1) gd are used as scaling

parameters to account for gravity/buoyancy effects (Jenny et al. 2004). Accordingly, the
typical Reynolds number is defined as Re = ρfV0d/µ, with µ the dynamic viscosity of
water. Note that in this study ζ is kept roughly constant, which means that the sphere
diameter, d, is the main control parameter.

As mentioned previously, the amount of vorticity generated at the surface of the body
is a key ingredient for what concerns the development of the wake. The production of



8 M. Castagna, N. Mazellier and A. Kourta

Figure 5. (a) Typical image recorded during the fall of a SH-80 sphere (d = 5 mm) using the
high magnification configuration. The black arrow denotes the gravity direction. The white arrow
indicates the region where the plastron deformation is visible. (b) Binarized image resulting from
the contour finding algorithm used to compute the aspect ratio χ. The red dashed line symbolises
the sphere. The variable ` denotes the typical length scale of the observed protrusion.

vorticity at the sphere surface is expected to be concentrated within the laminar boundary
layer, which is characterised by its thickness δ ∼ dRe−1/2. The vorticity generated in the
boundary layer can be approximated by ω ∼ ∆U/δ with ∆U the typical velocity jump
across the boundary layer (Batchelor 1967). In the case of a slippery wall, ∆U ∼ V0−Vg
where Vg is the slip velocity. Introducing the slip length model and approximating the
slip length by the characteristic dimension of the surface roughness λ (Ybert et al. 2007)
yields Vg ∼ λu2τ/ν, with uτ the friction velocity and ν = µ/ρf the fluid kinematic
viscosity. Assuming the viscous drag to account for 10% of the total drag (sub-critical
regime) we obtain uτ = kV0, with k = O

(
10−1

)
. Plugging these expressions together

yields:

ω? = A

(
1− k λ

δν

)
d

δ
, (3.1)

with δν = ν/uτ the viscous length scale and A = O(1). For a given sphere diameter,
this relationship predicts that the production of vorticity decreases linearly with the slip
length, which is assimilated to the surface roughness here. However, it is important to
recall that this prediction is based on the assumption that the air layer encapsulating
the sphere is non-deformable. Details on the derivation of eq. 3.1 and its implications are
given in Appendix B.

Figure 5 shows a typical snapshot of a SH-80 sphere (d = 5 mm) during its falling
motion using the high magnification configuration. This image clearly illustrates the
deformation of the air plastron as testified by the presence of a huge protrusion located
at the backside of the sphere. The plastron deformation can be quantified by introducing
the aspect ratio χ such that:

χ =
deq
d
, (3.2)

where deq denotes an equivalent diameter defined as follows:

deq = 2

√
S
π
, (3.3)
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Figure 6. Typical snapshots recorded in high magnification configuration illustrating the
movement and deformation of the air plastron (indicated by white arrows) around SH-80 coated
spheres. (a) d = 5 mm, (b) d = 20 mm. The black arrows represent the gravity direction. The
variables t̄? and t̃? designate two time origins chosen randomly.

with S the surface area delineated by the deformed interface. Based on the MATLAB R©

image processing toolbox, a contour finding algorithm has been developed to estimate
S. The output of this algorithm applied to the image shown in figure 5(a) is illustrated
in figure 5(b). In practice, S is estimated via the computation of the white area. As
shown in figure 6, the plastron shape is extremely sensitive to the sphere diameter or
equivalently Re. Indeed, while the sequence in figure 6(a) (d = 5 mm) is characterized
by the presence of a single protrusion, the sequence in figure 6(b) (d = 20 mm) reveals
the presence of multiple air pockets. Note however that the typical length scale, `, of the
protrusions observed in this study (see figure 5(b)) remains roughly constant (≈ 1.5±0.5
mm) independently of d and λ. From the image post-processing of the high magnification
configuration, it is found that χ decreases from around 1.2 for the smallest SH spheres
(i.e., d = 5 mm) to about 1 for the largest SH spheres (i.e., d = 25 mm). In other words,
although the local normalized curvature d/` increases with the sphere diameter, at the
same time the global shape of the plastron tends to be spherical. This means that the
idealized shape assumed to derive the expression 3.1 is more likely to be achieved for the
largest sphere diameter in this study.

As emphasised in figures 5 and 6, the interface distortion occurs at the backside of the
spheres, which undergoes the massive separation of the laminar boundary layer typical
of the sub-critical regime. This suggests that the pressure deficit induced by the flow
separation promotes the (partial) suction of the air entrapped in the surface roughness.
The change in χ is therefore the result of the local competition between the separation-
induced suction (∼ ρV 2

0 ) and the capillary pressure (∼ γ/d, with γ the water/air surface
tension), which can be qualitatively represented by introducing the Weber number such
as:

We =
ρfV

2
0 d

γ
. (3.4)

It is worth noticing that this definition differs from that proposed by Seo et al. (2015)
who quantified the flow/interface interaction in a turbulent channel flow with viscosity-
based variables. Indeed, the wake of the sphere studied here is predominated by the



10 M. Castagna, N. Mazellier and A. Kourta

form drag. However, one can show that We+ = Wek2δν/d, where We+ is the Weber
number in wall units as introduced by Seo et al. (2015). In this study, We+ ≈ 10−3.
Furthermore, it is found that λ+ = λuτ/ν 6 15 which is lower than the critical slip
length where plastron failure is expected to occur as predicted by Seo et al. (2015). This
is consistent with the fact that we did not observe the release of air bubbles in the wake
except when the sphere hit the bottom of the tank.

According to the definition of V0, it comes:

We =
ρfg

γ
(ζ − 1) d2. (3.5)

Recalling that here ζ is roughly constant, this expression implies that the sphere
diameter is also the main control parameter of the flow/interface interaction.

An important remark has to be made here about the relationship between χ and We.
Although both of them characterise the interaction between the plastron and the local
stresses induced by the wake, χ is perfectly suited to deliver an a posteriori quantitative
description of the interface deformation. However, a reliable estimation of χ suffers
from a severe limitation. Indeed, the computation of χ is based on a two-dimensional
projection of a phenomenon which is likely three-dimensional. Unfortunately, the out-
of-plane deformations, although perceptible (see supplementary material), are hidden
due to the sphere opacity. This is the reason why in this study We is more convenient
to be used rather than χ. In fact, since We is set a priori, it should be regarded as a
qualitative indicator of plastron deformation. Let us now derive a relation linking χ and
We. Assuming that deq ≈ d+ `, equation 3.2 can be reformulated as follows:

χ = 1 +
`

d
. (3.6)

The approximated relation deq ≈ d + ` provides χ variations from around 1.2 for the
small diameter spheres toward the unitary value for the largest diameter spheres, in good
agreement with the definition given in eq. 3.3. Since ` is found almost constant, it comes:

We ∼ (χ− 1)
−2
. (3.7)

In other words, low values of We are associated to large χ and vice versa. The
implications of this relationship will be discussed further in §4.3.

The visualisations provided in figures 5 and 6 suggest that the air plastron compliance
and its dynamics are intimately connected to the wake. This raises the issue of a possible
feedback of the plastron motion and deformation onto the flow. Somehow, the plastron
deformation evidenced in this study shares some properties of freely rising bubbles
(Ellingsen & Risso 2001). Basically, the main difference is that bubbles adapts their
entire shape whereas here only a thin layer is compliant. It is the reason why the
maximum values of χ observed here (≈ 1.2) are much lower compared to those of fully
deformable bodies (Mougin & Magnaudet 2002b). Nevertheless, it is reasonable to assume
that the physical mechanisms driving the body/flow interaction are comparable, at least
qualitatively. In figure 7, a schematic description of this interaction is proposed: the
unsteady pressure gradient induced by the massive separation around the falling sphere
promotes the deformation and the movement of the air plastron. This modification of
the boundary conditions may alter significantly the production of vorticity at the body
surface and accordingly the intensity of vorticity within the wake (see e.g. Mougin &
Magnaudet 2002b; Legendre et al. 2009), which in turn may impact the pressure gradient.
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Figure 7. A possible driving mechanism of the mutual interaction between the flow and the
air plastron.

The feedback loop described in figure 7 suggests that the plastron deformation could have
a sizeable effect on the sphere wake since the hydrodynamic forces experienced by the
body are intimately linked to both pressure and vorticity distributions.

4. Hydrodynamic performances

So far, our observations reveal that the plastron shape is extremely sensitive to the
stresses induced by the wake. To proceed further, we now investigate the influence of
physical parameters on the hydrodynamic forces, i.e. lift and drag, experienced by the
falling spheres, with the goal to emphasise the feedback of plastron deformation onto the
flow. The effects of three possible parameters could be assessed: i. Re which characterizes
the wake, ii. λ/d which is representative of the slip and iii.We (or equivalently χ) which
describes the interface deformation. Note that due to their definitions, Re andWe cannot
be set independently. However, as mentioned previously, we expect the physical influence
of Re to be negligible (at least over the range studied here) in comparison of that ofWe.
This point will be discussed further in §4.3. Based on this assumption, we focus mostly
on the role of λ/d and We in the following.

4.1. Vertical motion

Let us start by investigating the fall of a sphere for which large deformations happen,
i.e. at low We. The time histories of the normalised vertical falling velocity v?z and

acceleration v̇?z =
dv?z
dt? for the smallest spheres (d = 5 mm) are displayed in figures 8 and

9, comparing the reference and the SH-80 coated surfaces. Starting from rest the sphere
first accelerates yielding an increase of v?z and then reaches its terminal velocity v?z∞ once
transient effects vanish. Note that, in this study, since ζ ≈ 7, the vertical motion could
be well approximated by solving the following equation (Mordant & Pinton 2000):(

ζ +
1

2

)
v̇?z = 1− 3CD

4
v?2z , (4.1)

where the empirical law CD(Re) given by Cheng (2009) was considered (see figure 1). In
equation 4.1, the left-hand side term is the acceleration weighted by the added mass, while
the right-hand side terms represent the gravity/buoyancy and the drag force respectively.
For the sake of simplicity, the term accounting for the Stokes memory effects was not
considered (see Mordant & Pinton (2000) for full details). Note that at release time,
i.e. t? = 0, the vertical velocity is zero, and subsequently the drag term is null. This,
combined with the exclusion of memory effects implies that the predicted velocity is
expected to be slightly overestimated shortly after the sphere release and in the initial
part of the sphere drop.

For the reference sphere, a good agreement between the predicted and the measured
falling velocity is observed at the early stage of the motion and in the steady state as well
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Figure 8. Time evolution of the vertical velocity (a) and acceleration (b) of the d = 5 mm
reference (smooth) spheres. ◦: experimental data (for the sake of readability, 1 point out of 2 is
reported). Solid line: prediction according to equation 4.1. Dashed line: fitted model according
to equation 4.4 (Mordant & Pinton 2000). The insert shows the errorbars (95% confidence level)
in the terminal velocity region.

(see figure 8(a)). However, a significant departure arises within the range t? ∈ [10; 40]. The
experimental velocity drop is induced by an acceleration decrease occurring between t? ≈
10 and t? ≈ 20 (see figure 8(b)). Such phenomenon has been reported by other authors
and is induced by the onset of instabilities in the wake of the sphere, which promotes
a sudden drag increase (Jenny et al. 2004). This point will be discussed further in §4.2.
More surprisingly, from t? ≈ 20 to t? ≈ 40 the measured sphere acceleration exceeds
its predicted value, which balances the previous acceleration reduction and enables the
reference sphere to reach its predicted terminal velocity, provided that v?z∞ =

∫∞
0
v̇?zdt

?.
For the SH sphere, figure 9(b) similarly evidences an acceleration decrease. However,

the departure from the predicted acceleration occurs at t? ≈ 7, which means that the SH
coating promotes the onset of instabilities earlier than the reference sphere. Moreover,
unlike the reference sphere, the measured acceleration then collapses on the predicted
trend beyond t? ≈ 15. Accordingly, the terminal velocity achieved by the SH sphere
is much lower than its predicted value as emphasised in figure 9(a). In the specific
case displayed in figures 8 and 9, i.e. d = 5 mm, this yields an increase of terminal
drag coefficient due to the SH coating, since equation 4.1 reduces to CD∞ = 4

3v?2z∞
once

transient effects vanish. This result agrees with the findings of Ahmmed et al. (2016) who
reported drag increase of laser-textured SH spheres at comparable Reynolds numbers.

4.2. Lift force

In what follows we focus on the flow-induced loads experienced by the spheres, starting
with lift. Since lift force results from the asymmetric distribution of vorticity released in
the wake, it is a very well suited indicator of instability onset. The time history of the lift
coefficient CL = 8|L|/

(
ρfv

2
zπd

2
)
, where |L| is the lift force magnitude, was estimated by
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Figure 9. Time evolution of the vertical velocity (a) and acceleration (b) of the d = 5 mm SH-80
coated spheres. ◦: experimental data (for the sake of readability, 1 point out of 2 is reported).
Solid line: prediction according to equation 4.1. Dashed line: fitted model according to equation
4.4 (Mordant & Pinton 2000). The insert shows the errorbars (95% confidence level) in the
terminal velocity region.

solving the generalized Kirchhoff equations (Mougin & Magnaudet 2002a) following the
methodology described in detail by Shew et al. (2006). The interested reader can find
some details about the strategy followed for the CL evaluation and its connection with the
transversal motion in Appendix C. Figure 10 shows the evolution of CL calculated from
our experimental data for d = 5 mm (We ≈ 20) and d = 20 mm (We ≈ 360) spheres.
Note that the signal-to-noise ratio is too low at the early stage of motion (shaded zone)
for the lift force estimation to be reliable. At the starting of motion, CL is almost null,
meaning that the wake is axisymmetric and accordingly the trajectory is vertical. Then,
CL suddenly increases as a result of the loss of axisymmetry of the wake, which originates
from instabilities arising in the wake (Magnaudet & Eames 2000; Horowitz & Williamson
2010b). These instabilities promote path unsteadiness (see figure 2(c)) together with
vertical velocity decrease with respect to the prediction, as discussed in §4.1. However,
the amplitude of path excursion is moderate due to lift fluctuation damping caused by
the high ζ values considered in this study. Once lift fluctuations vanish, CL remains
almost constant, which implies the sphere to follow an oblique trajectory. Note that for
the d = 20 mm spheres, the tank is not tall enough for the lift force to reach its steady
state. Nevertheless, the wake transition as well as the damping of the lift fluctuation are
clearly visible.

We now introduce τ as the characteristic time at which the wake instability occurs.
In practice, τ is estimated as the time where the condition CL = 0.05 is first met. This
threshold value was chosen in order to assure the detection of the instability to be above
the experimental uncertainties of the lift coefficient. The evolution of ∆τ = 1−τSH/τ ref
(with superscripts SH and ref referring to SH coating and smooth surface, respectively)
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Figure 10. Time history of the lift coefficient of the (a) d = 5 mm and (b) d = 20 mm
spheres (for the sake of readability, 1 point out of 2 is reported). •: reference (smooth) sphere.
H, SH-NAR coating. �, SH-220 coating. �, SH-80 coating. The grey arrows indicate increasing
roughness thickness. The shaded region identifies the portion of time where lift estimation is
corrupted by the signal-to-noise ratio. The two inserts show the errorbars (95% confidence level)
in the wake instability occurrence region.

Figure 11. Effect of surface properties on the characteristic time at which wake instabilities
appear. H, SH-NAR coating. �, SH-220 coating. �, SH-80 coating. Dashed lines: best fit of
equation 4.2 in the least-mean square sense. The grey arrow indicates increasing We. For the
sake of readability, only results for d = 5, 15, 20 and 25 mm are reported.

is displayed in figure 11 with respect to the dimensionless roughness λ/d for different
sphere diameters. It appears that the data are well fitted by a linear relationship:

∆τ ≈ ατ
λ

d
, (4.2)

with ατ the slope of the law. In any case, the SH coatings trigger wake instability
earlier than the reference spheres. Our findings agree with the results of Jenny et al.
(2004) and Fernandes et al. (2007) who reported earlier transition of asymmetric bodies.
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Figure 12. Evolution of the slope ατ (see equation 4.2) with respect to We. Dashed lines:
best fit of equation 4.3 in the least-mean square sense.

In a similar fashion, the imperfect sphericity induced by the interface distortion may
trigger the wake instabilities more rapidly.

Figure 12 shows the variation of ατ as a function of We. It is found that ατ ∼ Wem

over the available range of operating conditions tested in this study. Surprisingly, this
plot reveals an abrupt change of the power law exponent m, which varies from 0 to 1,
around a critical value Wec = 180 such that{

ατ = ατ0 if We <Wec

ατ = ατ0

(
2 WeWec − 1

)
if We >Wec

(4.3)

with ατ0 ≈ 7.5. As evidenced in figure 10, the change in ατ observed at Wec coincides
with a significant modification of the magnitude of both the lift fluctuations during the
transient phase and the lift force in the steady regime. For We <Wec (figure 10(a)), SH
coatings tend to increase lift, especially in the steady state regime. On the contrary, for
We >Wec (figure 10(b)), the lift amplitude is reduced. Remember that the lift force is
intimately related to the intensity of vorticity around the body. Accordingly, our findings
suggest that the high interface distortion which is achieved in average when We <Wec
leads to an increase of the amount of vorticity released in the wake. On the contrary,
the production of vorticity seems to be mitigated when the condition We >Wec is met,
which would imply that the expression 3.1 is assessed.

4.3. Drag force

Let us now illustrate the consequences on the terminal drag coefficient CD∞, which
is displayed in figure 13 as a function of the terminal Reynolds number Re∞ = v?z∞Re.
As mentioned previously, for the largest spheres (Re∞ > 2 × 104) the tank is not tall
enough for the steady state to be achieved. In the worst case (d = 25 mm), the maximum
measurable vertical velocity is 15% lower than the terminal velocity predicted by equation
4.1. To overcome this issue, the terminal velocity v?z∞ was inferred by best fitting, in the
least-mean square sense, the data with the following model proposed by Mordant &
Pinton (2000):

v?z = v?z∞

(
1− e−βt

?
)
, (4.4)

where v?z∞ and β are the fit parameters. Figures 8 and 9 demonstrate the relevance
of the model expressed in equation 4.4. Anyhow, it is worth noting that due to the
limitations of our experimental set-up, the measurements presented in figure 13 for
Re∞ > 2×104 should be regarded as qualitative results emphasising the relative influence
of plastron properties on drag. A new experimental set-up is currently under design to
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Figure 13. Terminal drag coefficient CD∞ as a function of terminal Reynolds number Re∞
for all the investigated spheres. •: reference (smooth) sphere. H, SH-NAR coating. �, SH-220

coating. �, SH-80 coating. 9, spheres falling rectilinearly (Horowitz & Williamson 2010a). .,
reference sphere (Ahmmed et al. 2016). /, SH sphere (Ahmmed et al. 2016). 4, d = 25 mm
reference spheres (McHale et al. 2009). 5, d = 25 mm SH spheres with air plastron (McHale
et al. 2009). ◦, experimental data from Lapple & Sheperd (1940). The error bars represent the
95% confidence level. The grey arrows indicate increasing surface roughness thickness. The insert
shows the terminal drag coefficient variation with respect to the reference sphere as a function
of the non-dimensional roughness λ/d for the spheres in the Re∞ ≈ 0.5× 104 region.

properly address this issue. For assessment purpose, data obtained by Lapple & Sheperd
(1940), Horowitz & Williamson (2010a) (for spheres falling rectilinearly) as well as those
estimated from the results given by Ahmmed et al. (2016) and McHale et al. (2009) for
smooth and SH spheres have also been reported. As far as reference (smooth) spheres are
concerned, a fairly good agreement between our measurements and the data reported in
previous studies is observed over the overlapping Re∞ range, with the exception of the
work of McHale et al. (2009). Beyond Re∞ ≈ 3 × 104, our data deviates slightly from
that of Lapple & Sheperd (1940) which may be due to the fitting procedure.

For what concerns SH coatings, both interface deformation (i.e.We) and slip (i.e. λ/d)

have a sizeable influence on CD∞. We introduce ∆CD = 1− CSHD∞/C
ref
D∞ to characterise

the drag change induced by the surface properties. The insert in figure 13 shows the
evolution of ∆CD for the smallest sphere (i.e. d = 5 mm). For comparison, the drag
change reported by Ahmmed et al. (2016) at a comparable Re∞ is also displayed. It
is worth noting the excellent agreement between our data and those of Ahmmed et al.
(2016), whose SH spheres are characterised by a nano-sized surface roughness. This plot
suggests that the drag change is well approximated by the following law:

∆CD = αD
λ

d
+∆CD0, (4.5)

where ∆CD0 represents the drag change extrapolated at virtually zero surface rough-
ness and αD stands for the drag rate of change. As evidenced in figure 14, this trend
applies also for the other spheres tested in this study. Drag increase with respect to the
reference by up to +45% is found for the smallest spheres (lowWe), whereas a significant
drag reduction down to -35% is noticed for the largest spheres (high We). This opposite
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Figure 14. Terminal drag coefficient variation with respect to the reference sphere as a function
of the non-dimensional roughness. H, SH-NAR coating. �, SH-220 coating. �, SH-80 coating.
The dashed lines highlight the linear behaviour (see equation 4.5). The grey arrow indicates
increasingWe. For the sake of readability, only results for d = 5, 15, 20 and 25 mm are reported.
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Figure 15. Slope αD (see equation 4.5) as a function of the normalised Weber number for all the
tested diameters. ◦, experimental data. Dashed lines: best fit of equation 4.6 in the least-mean
square sense.

trend is even more evident in figure 15, which displays the evolution of αD as a function
of We normalised by the critical value Wec.

Pretty much like what was observed for ατ , it is found that αD ∼ Wem. Once again,
an abrupt change of trend is clearly visible at Wec such that:{

αD = αD0 if We <Wec
αD = 4.5− 3.2 WeWec if We >Wec

(4.6)

with αD0 ≈ 0.93. For We < Wec, αD is roughly constant and positive meaning that
drag increases with increasing plastron thickness. On the contrary, for We < Wec, αD
becomes negative which yields the drag reduction observed in figure 13.

It is worth noting that the drag changes observed in this study encompass the different
trends reported in previous works (McHale et al. 2009; Ahmmed et al. 2016). Taking
into account the plastron deformation might provide an attractive way to explain these
results within an unified framework. Indeed, according to equation 3.5, the Weber number
characterising the studies of McHale et al. (2009) and Ahmmed et al. (2016) is about 20,
which is comparable to the smallest value reached in this work. Based on our results, one
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Figure 16. Variation of the aspect ratio χ as a function of We according to equation 4.7.
Solid black: this study. Solid blue: Ahmmed et al. (2016). Solid red: McHale et al. (2009). The
vertical dashed line indicates the critical Weber number Wec, whilst the horizontal dashed line
represents its corresponding critical aspect ratio χc. The dots symbolise the Weber number
region where the studies can be compared (We ≈ 20).

would expect drag increase, which is not reported by McHale et al. (2009). This illustrates
that a comprehensive relationship between We and χ needs to be properly established.
In fact, a possible explanation of these apparently discordant results arises by developing
equation 3.7 one step further. To this end, equation 3.5 injected into equation 3.6 yields:

χ = 1 +

√
ρf (ζ − 1)g`2

γ
We−1/2. (4.7)

This expression takes into account the influence of ζ, whose values are approximately 2.2
in the work of Ahmmed et al. (2016) (PTFE spheres) and 1.2 in the study of McHale
et al. (2009) (acrylic spheres). Based on the assumption that the magnitude of the air
layer protrusions, `, is comparable to that observed here, figure 16 shows the evolution
of χ according to equation 4.7. In correspondence to Wec (see figure 12), we introduce
a critical aspect ratio χc ≈ 1.1. Based on our findings, highly deformed plastron, i.e.
χ > χc, yields drag increase, whilst a plastron almost spherical in average, i.e. χ < χc,
results into drag mitigation. Focusing our attention on the We ≈ 20 region, it appears
clearly that the aspect ratio featuring the study of McHale et al. (2009) lies below χc.
This perfectly agrees with the drag reduction these authors reported. Conversely, drag
increase observed in this study and in the work of Ahmmed et al. (2016) falls within the
region of highly deformed plastron, i.e. χ > χc. All together, our results clearly emphasise
that, under the investigated operating conditions, the plastron compliance plays a key
role in the performances of SH surfaces. Obviously, further efforts are required to confirm
our findings and extrapolate them over a broader range of operating conditions.

5. Concluding remarks

In this work, free falling experiments of super-hydrophobic spheres were carried out.
To do so, super-hydrophobic coatings were deposited over stainless steel spheres via a
spray method suitable for large scale applications. The surface roughness was controlled
by embedding micron-sized powders with different particle size during the manufacturing
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process. A particular attention has been put on the influence of the deformation of the air
layer encapsulating the sphere in the Cassie-Baxter state. To this end, the sphere motion
was analysed to investigate the hydrodynamic performances in the so-called sub-critical
regime.

A first outcome of this study is the evidence of plastron deformation in response to
the separation-induced stresses experienced in the wake of the spheres. The competition
between the pressure deficit and the surface tension was estimated quantitatively using
the aspect ratio χ of the observed body and qualitatively by introducing the Weber
number We. The analysis of highly resolved visualisations indicates that the plastron
adopts an oblate shape at low We, whilst it tends to be spherical in average at high We.

The second outcome of this work relates to the feedback of the plastron deformation on
the flow. Indeed, it has been found that the plastron compliance has a sizeable influence
on the wake development. In a first stage, the transient fall was studied through the
time history of the lift coefficient, which is used as a footprint of the amount of vorticity
generated during the sphere motion. Compared to smooth spheres used as reference,
it has been observed that the onset of the wake instabilities is triggered earlier by the
super-hydrophobic coatings. The time at which the instabilities are detected decreases
linearly with the slippage effect, which is controlled by changing the surface roughness.
Our results highlight an abrupt change of scaling law around a critical Weber number,
Wec ≈ 200. A simple model was used to derive the critical aspect ratio χc where the
condition We = Wec is met. The steady state is then investigated via the terminal
drag coefficient which is compared to values reported in others studies. In comparison to
drag measured for the reference spheres, significant drag increase is obtained for highly
deformed interface achieved for χ > χc, whereas low deformation obtained for χ < χc
results in drag mitigation.

Even though the proposed scenario provides an attractive way to explain and unify
apparently dissonant results reported in previous works, it requires additional studies
with the aim to deliver more reliable SH surface models. Moreover, our study should
be extended to a broader range of operating conditions. The motivations of doing so
are threefold: i. delineate regimes where the plastron compliance cannot be neglected,
ii. discriminate the effect of Re∞ and We and iii. assess the relationship between
We and the aspect ratio χ outside the sub-critical regime. All together, our findings
suggest that the plastron compliance may be a fundamental phenomenon involved in
the production of vorticity at the body surface, which in turns deeply impacts the wake.
A full understanding of the physical mechanisms at play during the wake transition and
the terminal state would require further investigations. Finally, it should be determined
whether or not our findings can be extrapolated to other flows (e.g. pressure-driven
flows) over SH surfaces.

This work was supported by the Direction Générale de l’Armement (DGA), Ministère
de la Défense, République Française and the Agence Nationale de la Recherche (ANR)
through the Investissements d’Avenir program under the Labex CAPRYSSES Project
(ANR-11-LABX-0006-01). The financial support of the Région Centre/Val de Loire
through the regional project Modif’Surf is also gratefully acknowledged. NM wishes to
thank Prof. A. Bottaro and Dr. R. Garćıa-Mayoral for fruitful discussions.

Appendix A. Measurement uncertainties and algorithm validation

In this Appendix, we provide details about the experimental measurement uncertainties
and the post-processing technique used to evaluate both the velocity and the acceleration.
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Table 2 shows the measured properties of all the analysed spheres. The nominal
diameter of the stainless steel bearing spheres ranges from 5 to 25 mm. The actual
sphere diameter was measured along at least five different directions, with a resolution
of 10 µm. The reported uncertainties on d, which represent the 95% confidence level,
keep lower than 2% of the respective average value in all cases, testifying the satisfactory
sphericity of the coated spheres. All the SH coatings determine a d increase with respect
to the corresponding reference sphere, with a maximum +10% in the SH-80 coating
case. Masses were evaluated by a single measurement with a Mettler Toledo AB104-S
analytical balance, with an accuracy of 0.1 mg. The largest mass augmentation (+5%)
with respect to the corresponding reference sphere is reached with the SH-80 coating.
The deposition of the SH coatings results in a decrease of the sphere density with respect
to the reference stainless steel sphere (down to −20%). The largest uncertainties of the
sphere densities (95% confidence level) are approximately 4% of the respective average
value.
Once the 3D sphere trajectories were available, velocities and accelerations were cal-
culated by a time derivative. For time-resolved experimental data, noticeable error
propagation may be obtained. Two techniques were therefore compared in order to
achieve reliable velocity and acceleration information. Firstly, we performed an estimation
of velocity and acceleration via a central finite difference scheme (subscript FD): an a
posteriori filtering of the obtained derivative is performed in the cases where it is deemed
necessary, as explained in the following. Secondly, we followed the approach originally
proposed by Reinsch (1967) and recently developed by Epps & Truscott (2010) where
position data are fitted with a smoothing spline (subscript SPL), then the time derivation
is performed directly on the spline. The method consist on finding the spline with the
least roughness possible, given an error tolerance. The more the fitted spline captures the
experimental data noise, the more its roughness increases. A roughness - error tolerance
graph can thus be generated, making possible the detection of a critical error tolerance
that corresponds to the optimal spline fit. Figure 17 shows the percentage difference of
the vertical velocity ∆v?z = (v?zFD − v?zSPL) /v?z∞SPL evaluated by the two techniques in
the case of the reference sphere analysed in figure 8. Since no filtering was performed in
the finite difference case, figure 17 clearly shows that, under the investigated operating
conditions of our study, the two techniques give approximately the same estimation of the
velocity profile. Velocity variations lower than 1% of the respective terminal velocity were
evaluated in all cases. Conversely, a second derivative step amplified the measurement
error to a non-satisfactory level in the finite difference case. Figure 18 shows the marked
amplification of the experimental noise with respect to the acceleration evaluated by the
spline fitting technique. A large gap between the two techniques is especially noticed at
the very beginning of the drop. The acceleration estimated by the finite difference scheme
thus needs to be filtered to adequately reduce the experimental noise to a satisfactory
level. In detail, a Savitzky-Golay filter with a third order polynomial and a window length
equal to 25 experimental points was used. Figures 18 and 19 testify the good agreement
between the two techniques in the case of the reference sphere analysed in figure 8.
Deviations ∆v̇?z = (v̇?zFD − v̇?zSPL) /v̇?zSPL,max lower than 0.1% of the acceleration largest
value are obtained during the whole drop. A more marked gap between the filtered finite
difference scheme and the spline method is still visible at the very beginning of the drop,
but it does not influence the wake instability region at larger t?, which is the focus
of the discussion in §4.2. Since the uncertainties discussed above were evaluated in the
most severe case (i.e. for d = 5 mm), their order of magnitude is representative of the
uncertainties of all the analysed spheres, characterised by larger diameter and velocity
values.
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Figure 17. Vertical velocity difference between the central finite difference scheme and the
spline fitting method, for the NC sphere analysed in figure 8. The two codes results differ of less
than 1% of the terminal vertical velocity during the whole sphere drop. For the sake of clarity,
1 point out of 2 is reported.
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Figure 18. Vertical acceleration for the NC sphere analysed in figure 8. ◦: central finite difference
scheme without filtering. ♦: filtered central finite difference scheme. �: spline method fitting. For
the sake of clarity, 1 point out of 4 is reported. The central finite difference scheme determines
a non-satisfactory amplification of the experimental noise. The filtered central finite difference
data collapse over the spline method data, except for a more marked difference at the very
beginning of the sphere drop, which is not relevant for the wake instability discussion in §4.2.
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Figure 19. Vertical acceleration difference between the filtered central finite difference scheme
and the spline fitting method, for the NC sphere analysed in figure 8. For the sake of clarity, 1
point out of 2 is reported. The two codes results differ of less than 0.1% of the vertical acceleration
largest value during the whole sphere drop. Notice the more marked difference between the two
schemes limited to the very beginning of the sphere drop.
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dnom, [mm] NC SH-NAR SH-220 SH-80

5
d, [mm] 4.991 ± 0.008 5.026 ± 0.064 5.175 ± 0.018 5.481 ± 0.028
m, [g] 0.5057 0.5086 0.5184 0.5317

ρs, [kg/m3] 7768 ± 40 7651 ± 288 7144 ± 78 6167 ± 94

8
d, [mm] 7.992 ± 0.006 8.043 ± 0.016 8.160 ± 0.014 8.413 ± 0.048
m, [g] 2.0703 2.0782 2.0993 2.1329

ρs, [kg/m3] 7746 ± 16 7628 ± 44 7379 ± 38 6841 ± 120

10
d, [mm] 9.992 ± 0.006 10.032 ± 0.006 10.219 ± 0.022 10.488 ± 0.006
m, [g] 4.0403 4.0410 4.0829 4.1312

ρs, [kg/m3] 7735 ± 12 7645 ± 12 7307 ± 46 6839 ± 10

15
d, [mm] 14.990 ± 0.004 15.049 ± 0.008 15.173 ± 0.016 15.435 ± 0.048
m, [g] 13.6310 13.6721 13.7321 13.8314

ρs, [kg/m3] 7729 ± 6 7662 ± 12 7508 ± 22 7184 ± 66

20
d, [mm] 19.994 ± 0.004 20.056 ± 0.016 20.238 ± 0.038 20.677 ± 0.068
m, [g] 32.3190 32.3576 32.5811 32.8612

ρs, [kg/m3] 7723 ± 6 7660 ± 18 7507 ± 42 7099 ± 70

25
d, [mm] 24.992 ± 0.006 25.055 ± 0.008 25.279 ± 0.382 25.617 ± 0.260
m, [g] 63.1277 63.1620 63.8017 63.1445

ρs, [kg/m3] 7724 ± 6 7670 ± 6 7543 ± 342 7288 ± 222

Table 2. Measured properties of the analysed spheres. dnom, nominal diameter. d, actual
diameter. m, mass (measurement accuracy 0.1 mg). ρs, density. Reported uncertainties represent
the 95% confidence level.

Appendix B. Vorticity model

In this Appendix, we provide details about equation 3.1 describing the amount of
vorticity at the body surface. This relationship is derived under the assumption of a non-
deformable air layer encapsulating the sphere, by applying the classical slip-length model,
which considers the slip velocity Vg proportional to the wall shear stress and where the
slip length is approximated by λ. The equation 3.1 predicts that in the no-slip limit the
magnitude of the surface vorticity ω? increases as Re1/2. Conversely, the slip mitigates the
ω? amount. The evolution of the dimensionless vorticity computed according to equation
3.1 is shown in figure 20 as a function of Re = V0d/ν, for the slip lengths λ analysed
in this work. The dashed line represents the limit between an axisymmetric and a non-
axisymmetric wake behind the sphere that was proposed by Magnaudet & Mougin (2007)
in their numerical study of wake instabilities of fixed three-dimensional bubbles. The main
result of their criterion is the crucial importance of the amount of vorticity produced at
the body surface and injected in the flow. Different boundary conditions at the body
surface determine different amounts of vorticity. The law proposed by Magnaudet &
Mougin (2007) is properly normalized in order to be comparable with our study. The
Reynolds number field analysed in figure 20 approximately corresponds to the Re∞
range investigated by Magnaudet & Mougin (2007). The value A = 3.86 in equation 3.1
was evaluated by forcing the no-slip curve to intersect the instability criterion curve at
the Reynolds number where the first bifurcation of the sphere wake occurs (Re∞ = 210
or equivalently Re = 129). Interestingly, for large enough slip values the model predicts
the amount of surface vorticity to go back below the line describing the first regular
bifurcation. In this case, at large enough Reynolds number the vorticity flux advected
downstream prevails over the vorticity generation at the surface: not enough vorticity is
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Figure 20. Predicted vorticity at the surface of a sphere (see equation 3.1) as a function of
the Reynolds number. Solid black: λ = 0 µm. Solid red: λ = 25 µm. Solid blue: λ = 74 µm.
Solid green: λ = 142 µm. The dashed line represents the critical curve between an axisymmetric
standing eddy and a three-dimensional wake (see equation (4.1) in Magnaudet & Mougin (2007)).
The insert shows the detail of the critical region.

Figure 21. Predicted critical Reynolds number (see equation 3.1) as a function of the
non-dimensional roughness. •: reference (smooth) sphere. H, SH-NAR coating. �, SH-220
coating. �, SH-80 coating. Dashed line: best fit of the data in the least-mean square sense.

accumulated for the transition to occur (see e.g. Leal 1989; Legendre et al. 2009). The
insert in figure 20 shows a detail of the critical region: larger slip induces an increase of
the critical Reynolds number Recr at which the transition occurs. The linear relationship
between Recr and λ/d is reported in figure 21, where the slope of the fitting line is
approximately equal to 0.9. The model thus predicts, under the hypothesis of an ideal
non-deformable slip wall, a delay effect of slip on the transition occurrence. The conflict
between the model assumptions and results and the experimental evidences are discussed
in §4.
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Appendix C. Instantaneous forces evaluation

In this Appendix, we provide some details about the strategy used to derive the
instantaneous lift coefficient CL acting on the falling sphere. For full details, please refer
to Mougin & Magnaudet (2002a); Shew et al. (2006).

Mougin & Magnaudet (2002a) showed how, starting from the Kirchhoff equations
describing the motion of a rigid body in an inviscid, incompressible and unbounded
fluid, it is possible (Howe 1995) to extend them in order to consider a viscous, rotational
flow at rest at infinity. The same authors then showed how the joint exploitation of the
Kirchhoff and the Navier-Stokes equations can solve the coupled problem where the body
movement modifies the surrounding flow and the latter determines the body trajectory.
This formulation was later considered by Shew et al. (2006) to evaluate the forces acting
on rising bubbles. The starting point was the measurement of their three-dimensional
trajectories. The generalized Kirchhoff equations that govern the motion of a rigid body
of mass m, volume V, velocity V and rotation rate Ω are:

(mI +Λ)
dV

dt
+Ω × ((mI +Λ)V ) = F + F b, (C 1)

(J +D)
dΩ

dt
+Ω × ((J +D)Ω) + V × (ΛV ) = Γ , (C 2)

where I is the unity tensor, J is the inertia tensor of the body, Λ is the added mass
tensor and D is the added rotational inertia tensor. On the right-hand side of the above
equations F and Γ are the hydrodynamic forces (lift and drag) and torques respectively,
and F b is the gravity/buoyancy force. The chosen frame of reference rotates with the
sphere (see fig. 3(b) in Shew et al. (2006)): the 1-direction is parallel to the instantaneous
sphere velocity vector, the 2-direction is perpendicular to the 1-direction so that the
plane 1-2 is always vertical. The third direction is orthogonal to the 1-2 plane, hence
being always horizontal. The forces acting along the 1-direction are therefore the drag
D and the component of the gravity/buoyancy force Fb1. Along the 2-direction act the
components L2 and Fb2 of the lift and gravity/buoyancy forces, respectively. Finally, only
the component L3 of the lift force acts along the 3-direction. In the considered reference
system V = (V, 0, 0) and Λ is time independent with a 1/2 coefficient on the diagonal
due to the considered spherical geometry (see e.g. Magnaudet & Eames 2000). The point
symmetry of the analysed geometry also simplifies the handling of the rotational degrees
of freedom, which reduce to (Shew et al. 2006):

Ω1 =
dφ

dt
cos θ, (C 3a)

Ω2 =
dφ

dt
sin θ, (C 3b)

Ω3 = −dθ
dt
, (C 3c)

where θ is the pitch angle between V and the vertical direction, and φ is the azimuthal
angle between the horizontal projection of the 1-direction and a fixed horizontal line. All
the above assumptions reduce the problem to the following set of equations:

(m+ Λ11)
dV

dt
= D + Fb1, (C 4a)

Ω3 (m+ Λ11)V = L2 + Fb2, (C 4b)

−Ω2 (m+ Λ11)V = L3, (C 4c)
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where Fb1 = (ρs − ρf )Vg cos θ and Fb2 = (ρs − ρf )Vg sin θ. The only unknowns in equa-
tions C 4 are the instantaneous drag and lift magnitudes, since from the available three-
dimensional sphere movement it is possible to evaluate θ = arccos (Vz/V ) and dφ/dt =

(VxdVy/dt− VydVx/dt) /V 2
tr, with the transversal velocity defined as Vtr =

√
V 2
x + V 2

y ,

where the coordinate system (x,y,z) was illustrated in figure 2. The knowledge of the
instantaneous evolution of the velocity vector therefore allows the calculation of the time
evolution of the forces acting on the falling sphere. Notice that equations C 4 predict a
purely vertical falling when a zero lift force acts on the sphere, in agreement with the
findings that link the transversal motion with the wake instabilities (see e.g. Mougin &
Magnaudet 2002a). In that case, equations C 4 reduce to equation 4.1 introduced in §4.1.
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